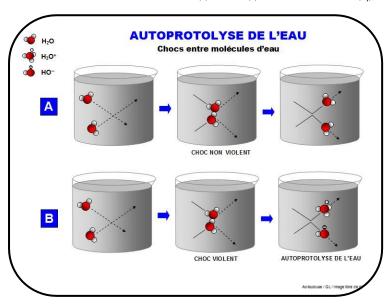
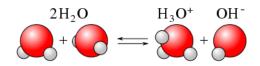
التحولات المقرونة بتفاعلات حمض ـ قاعدة

1) المحاليل المائية :


التفاعلات حمض ـ قاعدة المدروسة تحدث دائما في وسط مائي : إذن من الضروري الاهتمام بالسلوك الحمض ـ القاعدي للمذيب ألا و هو الماء .



1 ـ 1) التحلل الذاتي البروتوني الذاتي للماء :

 σ = 5,5 μ S.m $^{-1}$: قيمة غير منعدمة في منطر) ، الجهاز يشير إلى قيمة غير منعدمة في الماء الخالص (ماء مقطر) ، الجهاز يشير إلى قيمة غير منعدمة : و منه فإن الماء موصل للتيار الكهربائي بشكل ضعيف : يحتوي على أيونات آتية من تفاعل ذاتي للماء $H_3O_{(aq)}^+/H_2O_{(\ell)}$ و $H_2O_{(\ell)}/HO_{(aq)}^-/H_2O_{(\ell)}$ و $H_2O_{(\ell)}/HO_{(aq)}^-/H_2O_{(aq)}$: $H_3O_{(aq)}^+/H_2O_{(aq)}$ و أيونات الهيدروكسيد و أيونات الأكسونيوم :

$$H_2O_{(\ell)} + H_2O_{(\ell)} \qquad \rightleftharpoons \qquad H_3O_{(aq)}^+ + HO_{(aq)}^-$$

هذا التفاعل يسمى التحلل الذاتي البروتوني للماء ، و الذي يحدث في كل محلول مائي . و نفسر موصلية الماء بكونه يحتوي عل أيونات الأكسونيوم و أيونات الهيدروكسيد .

$$\sigma = \lambda \left(H_3O^+\right) \left[H_3O^+\right]_{eq} + \lambda \left(HO^-\right) \left[HO^-\right]_{eq}$$
 : بمکن أن نكتب :

 $\left[H_3 O^+
ight]_{\acute{e}\alpha} = \left[HO^-
ight]_{\acute{e}\alpha}$: و حسب معادلة التحلل الذاتي

$$\left[H_3O^+\right]_{\acute{e}q} = \left[HO^-\right]_{\acute{e}q} = \frac{\sigma}{\lambda \left(H_3O^+\right) + \lambda \left(HO^-\right)} \qquad \qquad : \ \ \, : \ \ \, |$$

 $\lambda (HO^{-}) = 20 \text{ mS.m}^2.\text{mol}^{-1}$ ϵ ϵ $\lambda (H_3O^{+}) = 35 \text{ mS.m}^2.\text{mol}^{-1}$

Page 1 الأستاذ : عزيز العطور

$$\left[H_3O^+\right]_{\acute{e}q} = \left[HO^-\right]_{\acute{e}q} = \frac{5,5.10^{-6}}{35.10^{-3} + 20.10^{-3}} = 1,0.10^{-4} \, \text{mol.m}^{-3} = 1,0.10^{-7} \, \text{mol.L}^{-1} \quad \text{poly}$$

1 ـ 2) الجداء الإيوني للماء :

: $m K_{_{
m e}}$ ثابتة التوازن المقرونة بتفاعل التحلل الذاتي للماء ، تسمى الجداء الأيوني للماء نرمز لها ب

$$\mathbf{K}_{\mathbf{e}} = \left[\mathbf{H}_{\mathbf{3}}\mathbf{O}^{+}\right]_{\mathbf{\acute{e}q}} \times \left[\mathbf{H}\mathbf{O}^{-}\right]_{\mathbf{\acute{e}q}}$$

$$\left[H_{3}O^{+} \right]_{6a} = \left[HO^{-} \right]_{6a} = 1,0.10^{-7} \text{ mol.} L^{-1}$$

: في الماء الخاص و عند $^{\circ}$ 25 لدينا

$$K_e = (1, 0.10^{-7})^2 = 1, 0.10^{-14}$$
 : 25°C :

. ثابتة التوازن $_{
m K}$ ميزة للتحلل الذاتي للماء ، قيمتها تتعلق فقط بدرجة الحرارة

درجة الحرارة	K _e	рКе
0°C	1,1.10 ⁻¹⁵	15,0
25°C	1,0.10 ⁻¹⁴	14,0
40°C	3,0.10 ⁻¹⁴	13,5
60°C	1,0.10 ⁻¹³	13,0
80°C	2,5.10 ⁻¹³	12,6
100°C	2,5.10 ⁻¹³	12,3

. ${
m pK}_{
m e} = -{
m LogK}_{
m e}$: نشير إلى أن

*تط..ة

 $C = 1,0 \times 10^{-2} \, \text{mo} \, \ell. \ell^{-1}$ تركيزه المولي $\left(\text{Na}^+(\text{aq}) + \text{HO}^-(\text{aq}) \right)$ تركيزه المولي pH ، 25°C أحسب ، عند

$$\left[H_3 O^+
ight]_{
m eq} = rac{K_e}{C}$$
 : نحصل على $\left[HO^-
ight]_{
m eq} = C$ بما أن

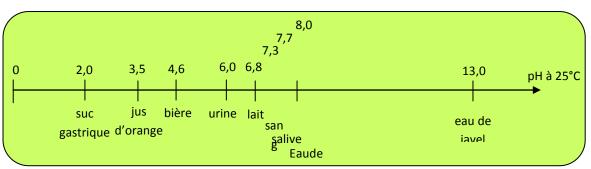
$$pH = -\log \bigg(\frac{1,0.10^{-14}}{1,0.10^{-2}}\bigg) = 12,0 \quad \text{: a is } pH = -\log \Big[H_3O^+\Big]_{\text{\'eq}} = -\log \bigg(\frac{K_e}{C}\bigg) \quad \text{: pH is phi}$$
 و باستعمال تعریف $pH = -\log \Big[H_3O^+\Big]_{\text{\'eq}} = -\log \Big[H_3O^+\Big]_{\text{\'e$

: pH سلم (3.1

هذه التعاريف تمكن من تحديد مجال pH لمحلول محايد ، حمضي أو قاعدي :

محلول حمضي	محلول قاعدي محلول محايد			
$\left[\mathbf{H}_{3}\mathbf{O}^{+}\right] _{\acute{e}\mathbf{q}}>\left[\mathbf{H}\mathbf{O}^{-}\right] _{\acute{e}\mathbf{q}}$	$\left[\mathbf{H}_{3}\mathbf{O}^{+}\right]_{\acute{e}\mathbf{q}} = \left[\mathbf{H}\mathbf{O}^{-}\right]_{\acute{e}\mathbf{q}}$	$\left[\mathbf{H}_{3}\mathbf{O}^{+}\right] _{\acute{e}\mathbf{q}}<\left[\mathbf{HO}^{-}\right] _{\acute{e}\mathbf{q}}$		
$K_e = [H_3]$	$\mathrm{O}^+ig]_{\mathrm{eq}} imesigl[\mathrm{HO}^-igr]_{\mathrm{eq}}$: الات يمكن أن نكتب	في كل الح		
$ ho H = -\log \left[H_3 \mathrm{O}^+ ight]_{\mathrm{\acute{e}q}}$ بما أن				
$2\log\left[H_3O^+\right]_{\acute{e}q} > \log K_e$	$\log K_e = 2 \log \left[H_3 O^+ \right]_{\acute{e}q}$	$2\log\left[\mathrm{H_{3}O^{^{+}}}\right]_{\mathrm{\acute{e}q}}<\log\mathrm{K_{e}}$		
$-\log \left[H_3 O^+ \right]_{\acute{e}q} < - \left(\frac{1}{2} \right) \log K_e$	$-\log\left[H_3O^+\right]_{\text{\'eq}} = -\left(\frac{1}{2}\right)\log K_e$	$-\log\left[H_3O^+\right]_{\text{\'eq}} < -\left(\frac{1}{2}\right)\log K_e$		
$pH < -\frac{\log K_e}{2}$	$pH = -\frac{\log K_e}{2}$	$pH > -\frac{\log K_e}{2}$		

$$K_e=10^{-pK_e}$$
 يظهر أنه عمليا يجب تعريف الثابتة $pK_e=-\log K_e$ حيث : $pK_e=10^{-pK_e}$ أو $pK_e=14,0$ عند $pK_e=14,0$


و دائما عند 25°C :

$$pH < 7,0$$
 أي $pH < \frac{1}{2} pK_e$ محلول محايد $pH = \frac{1}{2} pK_e = 7,0$ أي . $pH = \frac{1}{2} pK_e = 7,0$.

$$pH > 7,0$$
 أي $pH > \frac{1}{2}pK_e$ أي .

0		7,0		14 pH
	محاليل حمضية	محاليل محايدة	محاليل قاعدية	عند ℃25

أمثلة :

2) الأحماض و القواعد في محلول مائي :

. $pK_{_{\rm A}}$ أو $K_{_{\rm A}}$ أو 1 . 2

1 ـ 1 ـ 1) الحالة العامة:

 ${
m AH_{(aq)}} + {
m H_2O_{(\ell)}} \quad \rightleftarrows \quad {
m A_{(aq)}^-} + {
m H_3O_{(aq)}^+}$: هي الماء هي أعدة $K_{
m A}$ عادلة تفاعل حمض لمزدوجة قاعدة / حمض أبتة الحمضية $K_{
m A}$ للمزدوجة قاعدة / حمض ميث ثابتة الحمضية أبتة التوازن المقرونة بهذا التفاعل تسمى ثابتة الحمضية أ

$$\boldsymbol{K}_{A} = \frac{\left[\boldsymbol{A}^{-}\right]_{\acute{eq}} \times \left[\boldsymbol{H}_{3}\boldsymbol{O}^{+}\right]_{\acute{eq}}}{\left[\boldsymbol{A}\boldsymbol{H}\right]_{\acute{eq}}}$$

ثابتة الحمضية لمزدوجة قاعدة / حمض تتعلق فقط بدرجة الحرارة . $K_{\rm A} = 10^{-{\rm p}K_{\rm A}}$ أو ${\rm p}K_{\rm A} = -\log K_{\rm A}$

المزدوجة	pΚ _A	إسم الحمض
$H_3O^+(aq)/H_2O(l)$	0	أيون الأكسـزنيوم
HSO4 ⁻ (aq)/SO ₄ ²⁻ (aq)	1,9	أيون الهيدروجينو كبريتات
$H_3PO_4(aq)/H_2PO_4^-(aq)$	2,1	حمض الفوسفوريك
HF(aq) / F ⁻ (aq)	3,5	حمض الفلورودريك
HCOOH(aq) / HCOO ⁻ (aq)	3,8	حمض الميتانويك
$C_6H_5COOH(aq)/C_6H_5COO-(aq)$	4,2	حمض البنزويك
CH ₃ COOH(aq)/CH ₃ COO ⁻ (aq)	4,8	حمض الإيتانويك
$CO_2, H_2O/HCO_3^-(aq)$	6,4	ثنائي أوكسيد الكربون
$H_2PO_4^-(aq)/HPO_4^{2-}(aq)$	7,2	أيون ثنائي هيدروجينو فوسفاط
$\mathrm{NH_4}^+(\mathrm{aq}) / \mathrm{NH_3}(\mathrm{aq})$	9,2	أيون الأمونيوم

$HCO_3^-(aq)/CO_3^{2-}(aq)$	10,3	أيون هيدروجينو كربونات
$HPO_4^{2-}(aq)/PO_4^{3-}(aq)$	12,1	أيون هيدرو جينو فوسفاط
$H_2O(l)/HO^-(aq)$	14,0	الماء

*مثال ؛

ثابتة الحمضية للمزدوجة أمونياك / أيون الأمونيوم .

$$\mathrm{NH_4^+}(\mathrm{aq}) + \mathrm{H_2O}(\mathrm{l}) \quad \Longleftrightarrow \quad \mathrm{NH_3}(\mathrm{aq}) + \mathrm{H_3O_{(\mathrm{aq})}^+} \qquad :$$
معادلة تفاعل الحمض مع الماء

$$K_{A} = \frac{\left[NH_{3}\right]_{\acute{e}q} \times \left[H_{3}O^{+}\right]_{\acute{e}q}}{\left[NH_{4}^{+}\right]_{\acute{e}q}}$$
 : ولها التعبير : $pK_{A} = 9,2$ حيث $6,3x10^{-10}$ حيث $6,3x10^{-10}$

بتطبيق الدالة اللوغرتمية على هذا التعبير نحصل على علاقة مهمة:

$$\begin{split} \log K_{_{A}} &= log \Biggl(\frac{\left[base\right]_{\acute{e}q} \times \left[H_{_{3}}O^{^{+}}\right]_{\acute{e}q}}{\left[acide\right]_{\acute{e}q}} \Biggr) \\ -pK_{_{A}} &= log \bigg[H_{_{3}}O^{^{+}}\right]_{\acute{e}q} + log \Biggl(\frac{\left[base\right]_{\acute{e}q}}{\left[acide\right]_{\acute{e}q}} \Biggr) \\ -pK_{_{A}} &= -pH + log \Biggl(\frac{\left[base\right]_{\acute{e}q}}{\left[acide\right]_{\acute{e}q}} \Biggr) \\ \hline \\ pH &= pK_{_{A}} + log \Biggl(\frac{\left[base\right]_{\acute{e}q}}{\left[acide\right]_{\acute{e}q}} \Biggr) \end{split}$$

*تطبيق

. يحتوي على حمض الإيتانويك و أيونات الإيتانوات pH=5,0

$$\log \left(\frac{\left[\text{CH}_{3}\text{COO}^{-}\right]_{\text{eq}}}{\left[\text{CH}_{3}\text{COOH}\right]_{\text{eq}}}\right) = pH - pK_{A} \quad \text{لمزدوجة} \quad \text{ch}_{3}\text{COOH}_{\text{(aq)}} / \text{CH}_{3}\text{COO}_{\text{(aq)}}^{-} / \text{CH}_{3}\text{COO}_{\text{(aq)}}^{-}$$
 بمعرفة $pK_{A} = 4.8$

$$\left[\text{CH}_3 \text{COO}^- \right]_{\text{\'eq}} = 10^{\text{pH-pK}_A} = 10^{0.2} = 1,6$$
 : حيث نستنتج

رغم أن المحلول حمضي ، فإن تركيز الشكل القاعدي أكبر من تركيز الشكل الحمضي

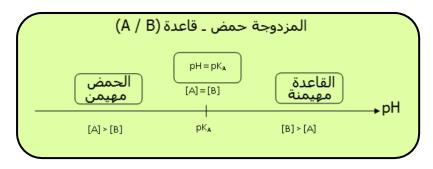
2 ـ 1 ـ 2) ثابتتي الحمضية لمزدوجتي الماء :

الماء أمفوليت حيث يتدخل في المزدوجتين :

$$H_3O^+(aq)+H_2O(l)$$
 \Longrightarrow $H_2O(l)+H_3O^+(aq)$: المزدوجة $\left(H_3O^+(aq)/H_2O(l)\right)$ ذات المعادلة .

. عيث
$$pK_{_{A}}=0$$
 حيث $pK_{_{A}}=0$ كيما كانت درجة الحرارة $K_{_{A}}=\frac{\left[H_{_{3}}O^{^{+}}(aq)\right]}{\left[H_{_{3}}O^{^{+}}(aq)\right]}=1$

$$H_2O(l)+H_2O(l)$$
 \rightleftarrows $HO^-(aq)+H_3O^+(aq)$: المزدوجة $\left(H_2O(l)/HO^-(aq)\right)$ ذات المعادلة : $pK_A=pK_e$ حيث $K_A=\left[H_3O^+(aq)\right]\times\left[HO^-(aq)\right]=K_e$ بالنسبة لهذه المزدوجة ، $pK_A=pK_e$ عند $pK_A=14,0$ عند $pK_A=14,0$


2 ـ 2) مجالات الهيمنة .

بالنسبة لمزدوجة قاعدة / حمض ، مجال هيمنة الحمض هو مجال pH حيث [القاعدة] < [الحمض] . و مجال هيمنة القاعدة هو مجال pH حيث [الحمض] < [القاعدة] . نلاحظ أن هناك ثلاثة حالات بالنسبة لمزدوجة $AH_{(aq)}$ / $A^-_{(aq)}$:

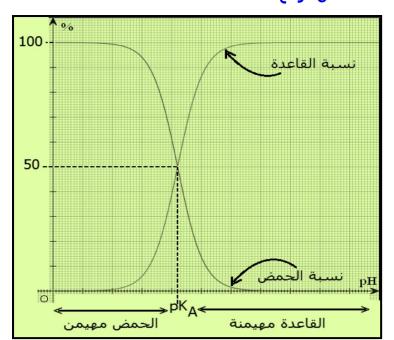
Page 4 الأستاذ : عزيز العطور

$[AH]_{\epsilon_q} > [A^-]_{\epsilon_q}$	$[AH]_{\acute{e}q} = [A^-]_{\acute{e}q}$	$\left[\!\!\left[A^-\right]\!\!\right]_{\!$	
إذن	إذن	إذن	
$rac{\left[A^{-} ight]_{ m eq}}{\left[AH ight]_{ m eq}} < 1$ حيث	$\frac{\begin{bmatrix} A^- \end{bmatrix}_{\text{éq}}}{\begin{bmatrix} AH \end{bmatrix}_{\text{éq}}} = 1$ حيث	$\frac{\left[\mathbf{A}^{-}\right]_{\text{\'eq}}}{\left[\mathbf{A}\mathbf{H}\right]_{\text{\'eq}}} > 1$	
		حيث	
$\log\left(\frac{\left[A^{-}\right]_{\text{éq}}}{\left[AH\right]_{\text{éq}}}\right) < 0$	$\log\left(\frac{\left[A^{-}\right]_{\text{\'eq}}}{\left[AH\right]_{\text{\'eq}}}\right) = 0$	$\log\left(\frac{\left[A^{-}\right]_{\acute{e}q}}{\left[AH\right]_{\acute{e}q}}\right) > 0$	
$pH = pK_{_{ m A}} + log \Biggl(rac{\left[A^{-} ight]_{ m \'eq}}{\left[AH ight]_{ m \'eq}} \Biggr)$ و بما أن			
pH < pK _A فإن	pH = pK _A	pH > pK _A	
الحمض مهيمن	التراكيز متساوية	القاعدة مهيمنة	

يمكن أن نلخص هذه النتائج في مخطط للهيمنة :

2 ـ 3 مخطط التوزيع .

بالنسبة لمزدوجة قاعدة / حمض ، يعطي مخطط التوزيع تطور نسبة الشكل الحمضي و نسبة الشكل القاعدي بدلالة pH . عند نقطة تلاقي منحنيي مخطط التوزيع لدينا :


 $pH = pK_A$ و [الحمض] = [العاعدة] : أي أن

وباعتبار أن مجموع تركيزي الشكلين الحمضي و القاعدي تركيز ثابت و يساوي تركيز المحلول :

: فإن
$$[AH] + [A^-] = \frac{C \cdot V - x}{V} + \frac{x}{V} = C$$

$$\frac{[AH]}{C} + \frac{[A^-]}{C} = 1$$

وبذلك نكتب:

$$\% A^{-} = \frac{\begin{bmatrix} A^{-} \end{bmatrix}_{\acute{eq}}}{\begin{bmatrix} AH \end{bmatrix}_{\acute{eq}} + \begin{bmatrix} A^{-} \end{bmatrix}_{\acute{eq}}} \times 100$$

$$\% AH = \frac{\begin{bmatrix} AH \end{bmatrix}_{\acute{eq}}}{\begin{bmatrix} AH \end{bmatrix}_{\acute{eq}} + \begin{bmatrix} A^{-} \end{bmatrix}_{\acute{eq}}} \times 100$$

2 ـ 4 سلوك الأحماض و القواعد في محلول .

*تحرية

نستعمل في هذه التجربة الأدوات و المواد التالية :

 $pH=10 \; , \; pH=7 \; , \; pH=4 \; :$ متر و ثلاثة محاليل عيارية (أي لها $pH=10 \; , \; pH=7 \; , \; pH=4 \;$ متر و ثلاثة محاليل عيارية (

. محاليل حمضية لها نفس التركيز $C = 1,0 \times 10^{-2} \, \mathrm{mo} \ell.\ell^{-1}$ حمض الكلوريدريك ، حمض الميتانويك ، حمض الإيتانويك.

. محاليل قاعدية لها نفس التركيز ${
m C}=1,0{
m x}10^{-2}\,{
m mo}\ell.\ell^{-1}$: المثيل أمين ، الأمونياك.

قبل استعمال pH ـ متر نضبط بالمحلولين العياريين 4 و 7 بالنسبة للأحماض ؛ و 7 و 10 بالنسبة للقواعد .

نقيس pH المحاليل الخمسة و ندون النتائج في الجدول أسفله :

الحمض	рН	pΚ _A
HCI	2,0	
нсоон	2,9	3,8
CH₃COOH	3,4	4,8

القاعدة	рН	рК _А
C ₂ H ₅ NH ₂	11,4	10,8
NH ₃	10,6	9,2

*استثمار:

يمكن أن نحسب نسبة التقدم النهائي لتفاعل الحمض مع الماء في كل محلول حمض :

 $HCl(g) + H_2O(l) \rightleftharpoons Cl^-(aq) + H_3O^+(aq)$: بالنسبة لحمض الكلوريدريك

$$au=100\%$$
 تسبة التقدم النهائي هي $au=rac{\left[H_3O^+
ight]_{
m \acute{e}q}}{c}=rac{10^{-pH}}{c}=1$ أي

 $HCOOH(aq) + H_2O(l) \rightleftarrows HCOO^-(aq) + H_3O^+(aq)$: بالنسبة لحمض الميتانويك : بالنسبة لحمض الميتانويك

$$au=13\%$$
 تسبة التقدم النهائي هي $au=rac{\left[H_3O^+
ight]_{eq}}{c}=rac{10^{-pH}}{c}=0,13$ أي

 $CH_3COOH(aq) + H_2O(1) \rightleftharpoons CH_3COO^-(aq) + H_3O^+(aq)$: بالنسبة لحمض الإيتانويك : بالنسبة لايتانويك : بالنسبة لحمض الإيتانويك : بالنسبة لايتانويك : بالنسبة لحمض الإيتانويك : بالنسبة لايتانويك : بالنسبة لايتانويك : بالنسبة لايتانويك : بالنسبة لحمض الإيتانويك : بالنسبة لايتانويك : بالنسبة لايتانويك : با

: كذلك يمكن أن نحسب نسبة التقدم النهائي لتفاعل القاعدة مع الماء في كل محلول قاعدي $C_2H_5NH_2(aq) + H_2O(l) \rightleftarrows C_2H_5NH_3^+(aq) + HO^-(aq)$: بالنسبة للمثيل أمين

$$au=25\%$$
 $au=rac{\left[HO^{-}
ight]_{
m eq}}{C}=rac{K_{
m e}}{10^{-pH}}=0,25$ أي

 $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + HO^-(aq)$: بالنسبة للأمونياك : $NH_3(aq) + H_2O(l) \rightleftharpoons NH_4^+(aq) + HO^-(aq)$

$$au=4,0\%$$
 $au=rac{\left[HO^{-}
ight]_{
m \'eq}}{c}=rac{K_{
m e}}{10^{-pH}}=0,040$ کن

نلاحظ أن:

- . بالنسبة لمحاليل حمضية لها نفس التركيز ، كلما كانت pK_A لمزدوجة صغيرة ، كلما كان pH صغيرا و كلما كانت نسبة التقدم النهائي لتفاعل الحمض مع الماء كبيرة .
 - . بالنسبة لمحاليل قاعدية لها نفس التركيز ، كلما كانت pK_A لمزدوجة كبيرة ، كلما كان pH كبيرا و كلما كانت نسبة التقدم النهائي لتفاعل القاعدة مع الماء كبيرة .

في السنة الثانية من سلك البكالوريا ، لانقرن الثابتة $\,{
m pK}_{
m A}\,$ بالنسبة لأحماض كحمض الكلوريدريك ، الذي يتفاعل كليا مع الماء . نقول بأن هذه الأحماض أحماض قوية . ${
m H_3O_4^+}$ و حمض الكبريتيك ${
m HNO_3^+}$ ، نقول بأن هذه الأحماض أحماض قوية

3) الكواشف الملونة :

1.3) تعرىف:

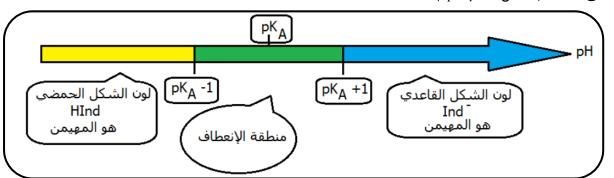
الكاشف الملون عبارة عن مزدوجة (قاعدة / حمض) حيث الشكل الحمضي و الشكل القاعدي ليس لهما نفس اللون . نرمز لمزدوجة كاشف ملون إصطلاحا بالرمز: `HInd / Ind

 $ext{HInd}_{(aq)} + ext{H}_2 ext{O}_{(\ell)}
ightleftharpoons ext{Ind}_{(aq)}^- + ext{H}_3 ext{O}_{(aq)}^+ \qquad :$ معادلة تفاعل الكاشـف الملون مع الماء هي

2.3) ملاحظات:

$$K_{A,Ind} = \frac{\left[Ind^{-}\right]_{f} \times \left[H_{3}O^{+}\right]_{f}}{\left[HInd\right]_{f}}$$
: نرمز لثابتة الحمضية للمزدوجة $K_{A,Ind}$ بالرمز $K_{A,Ind}$ بالرمز لثابتة الحمضية للمزدوجة

$$pH = pK_{A,Ind} + Log \frac{\left[Ind^{-}\right]_{f}}{\left[HInd\right]_{f}}$$
 : بالتالي فإن


, المحلول يتعلق بقيمة النسبة $\frac{\left[\operatorname{Ind}^{-}
ight]_{\mathrm{f}}}{\left[\operatorname{HInd}
ight]}$ للكاشف الملون المتواجد به ، وبالتالي بقيمة

ـ نقبل أن العين المجردة تميز بوضوح لون الشـكل الحمضي للكاشـف في المحلول الذي يوجد به دون لون شـكله القاعدي

ي يوجد به يوجد به الطريقة فإن الكاشف الملون يظهر بلون شكله القاعدي بوضوح دون لونه الحمضي في المحلول الذي يوجد به
$$\frac{\left[\text{Ind}^{-}\right]}{\left[\text{HInd}\right]} \geq 10 \quad \Rightarrow \quad Log(\frac{\left[\text{Ind}^{-}\right]}{\left[\text{HInd}\right]}) \geq +1 \quad \Rightarrow \quad pH \geq pK_{A,Ind} + 1$$
 إذاكان :

ـ يظهر الكاشف الملون بلون مزيج من لون شكله الحمضي و لون شكله القاعدي في المحلول الذي يوجد به إذا كان $pK_{A,Ind} - 1 \le pH \le pK_{A,Ind} + 1$

و يسمى هذا المجال من سلم pH بمنطقة انعطاف الكاشف .

الأستاذ: عزيز العطور Page 7

3 ـ 3) أمثلة :

الكاشف الملون	ھیلیانتین	أزرق البروموتيمول BBT	الفينول فتالين
لون الشكل الحمضي	أحمر	أصفر	عديم اللون
منطقة الإنعطاف	3,1 - 4,4	6,0 - 7,6	8,2 - 10,0
لون الشكل القاعدي	أصفر	أزرق	أحمر أورجواني

4) ثابتة التوازن المقرونة بتفاعل حمض ـ قاعدة ـ

لنعتبر التفاعل الحاصل بين الحمض A_1 المنتمي للمزدوجة A_1/B_1 ذات ثابتة الحمضية ، $K_{A,1}$ ، و القاعدة B_2 المنتمية للمزدوجة ، $K_{A,2}$ ذات ثابتة الحمضية ، $K_{A,2}$.

$$A_1+B_2 \iff B_1+A_2$$
 : المعادلة الموافقة لها التعبير
$$K = \frac{\left[B_1\right]_{\acute{e}q} \times \left[A_2\right]_{\acute{e}q}}{\left[A_1\right]_{..} \times \left[B_2\right]_{.}}$$
 : ثابتة التوازن لهذا التفاعل هي

$$K = \frac{\left[B_1\right]_{\acute{e}q} \times \left[A_2\right]_{\acute{e}q}}{\left[A_1\right]_{\acute{e}q} \times \left[B_2\right]_{\acute{e}q}} \times \frac{\left[H_3O^+\right]_{\acute{e}q}}{\left[H_3O^+\right]_{\acute{e}q}}$$
: يمكن أن نكتب :

$$\mathbf{K} = \frac{\left[\mathbf{B}_{1}\right]_{\acute{e}\mathbf{q}} \times \left[\mathbf{H}_{3}\mathbf{O}^{+}\right]_{\acute{e}\mathbf{q}}}{\left[\mathbf{A}_{1}\right]_{\acute{e}\mathbf{q}}} \times \frac{\left[\mathbf{A}_{2}\right]_{\acute{e}\mathbf{q}}}{\left[\mathbf{B}_{2}\right]_{\acute{e}\mathbf{q}} \times \left[\mathbf{H}_{3}\mathbf{O}^{+}\right]_{\acute{e}\mathbf{q}}}$$
: e منه :

$$K = \frac{K_{A,1}}{K_{A,2}} = 10^{pK_{A,2} - pK_{A,1}}$$
 : j

*تطبيق:

: أحسب ثابتة التوازن المقرونة بالتفاعل الحاصل بين حمض الميتانويك و أيونات البنزوات الحاصل (HCOOH(aq) + $C_6H_5COO^-$ (aq) \rightleftharpoons HCOO $^-$ (aq) + $C_6H_5COO^-$ (aq)

$$K = \frac{K_{A,1}}{K_{A,2}} = 10^{4,2-3,8} = 10^{0,4} = 2,9$$